Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.719
Filtrar
1.
Biol Pharm Bull ; 47(4): 791-795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583950

RESUMO

The number of patients with type 2 diabetes is increasing worldwide. The mechanisms leading to type 2 diabetes and its complications is being researched; however, the pathological mechanisms of diabetes in the small intestine remain unclear. Therefore, we examined these pathological mechanisms in the small intestine using a mouse model of type 2 diabetes (KK-Ay/TaJcl) aged 10 and 50 weeks. The results showed that diabetes worsened with age in the mice with type 2 diabetes. In these mice, advanced glycation end products (AGEs) in the small intestine and mast cell expression increased, whereas diamine oxidase (DAO) decreased; increased tumor necrosis factor (TNF)-α and histamine levels in the plasma and small intestine were also detected. Additionally, the expression of zonula occludens (ZO)-1 and Claudin1 and cell adhesion molecules in the small intestine reduced. These results exacerbated with age. These findings indicate that type 2 diabetes causes AGE/mast cell/histamine and TNF-α signal transmission in the small intestine and decreases small intestinal wall cell adhesion molecules cause TNF-α and histamine to flow into the body, worsening the diabetic condition. In addition, this sequence of events is suggested to be strengthened in aged mice with type 2 diabetes, thus exacerbating the disease. These findings of this study may facilitate the elucidation of the pathological mechanisms of type 2 diabetes and its associated complications.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Histamina/metabolismo , Intestino Delgado/metabolismo , Moléculas de Adesão Celular , Produtos Finais de Glicação Avançada/metabolismo
2.
J Drugs Dermatol ; 23(4): SF378083s5-SF378083s10, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564405

RESUMO

Skin aging is influenced by various exogenous and endogenous factors, ranging from ultraviolet (UV) light exposure and environmental toxins to biological sources, such as those that arise from normal metabolic processes (eg, free radicals). Glycation is the normal process by which glucose and other reducing sugars react with proteins to form an array of heterogeneous biomolecular structures known as advanced glycation end-products (AGEs) over time. However, AGEs are toxic to human cells and are implicated in the acceleration of inflammatory and oxidative processes, with their accumulation in the skin being associated with increased skin dulling and yellowing, fine lines, wrinkles, and skin laxity. Clinicians should become cognizant of how AGEs develop, what their biological consequences are, and familiarize themselves with available strategies to mitigate their formation. J Drugs Dermatol.  2024;23:4(Suppl 1):s5-10.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/toxicidade , Açúcares/efeitos adversos , Açúcares/metabolismo , Pele/metabolismo , Radicais Livres/metabolismo
3.
J Diabetes ; 16(4): e13548, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599828

RESUMO

OBJECTIVE: Several studies have demonstrated a significant association between the presence of the ear lobe crease (ELC) and cardiovascular disease. Advanced glycation end-products (AGEs) can affect the structures and functions of proteins and contribute to the development of diabetic complications. However, few studies have reported the relationship between AGEs and ELC. The purpose of this study was to investigate the correlation of skin autofluorescence (SAF)-AGEage (SAF-AGEs × age/100) with ELC. METHODS: This cross-sectional study enrolled 6500 eligible participants from two communities in Beijing. Skin autofluorescence (SAF) was used to measure skin AGEs (SAF-AGEs). SAF-AGEage was defined as AGEs × age/100. Binary logistic regression analysis and linear regression analysis nested in logistic models were applied to test outcomes. RESULTS: The overall prevalence of ELC with an average age of 62.7 years participants was 57.1% (n = 3714). Age, fasting blood glucose, systolic blood pressure, and lipoprotein cholesterol were all greater in participants with ELC. ELC-positive participants had higher prevalence of coronary heart disease. Logistic analysis showed a significantly positive relationship between quartiles of SAF-AGEage and ELC (odds ratio [OR] 1.526, 95% CI 1.324-1.759; OR 2.072, CI 1.791-2.396; and OR 2.983, CI 2.551-3.489) for the multivariate-adjusted models, respectively. Stratified research revealed that those with a history of diabetes, hypertension, or coronary heart disease experienced the connection between SAF-AGEage and ELC. CONCLUSION: ELC is associated with coronary heart disease, and the SAF-AGE has a potential role in ELC development in elder people.


Assuntos
Doença das Coronárias , Diabetes Mellitus , Humanos , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Estudos Transversais , Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/metabolismo , Pele/metabolismo
4.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 48-53, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650154

RESUMO

Plentiful studies have clarified miRNAs take on a key role in the sexual dysfunction of diabetic rats. This study aimed to figure out microRNA (miR)-503-5p/SYDE2 axis' latent mechanisms in streptozotocin-induced diabetic rat sexual dysfunction. A model of erectile dysfunction (ED) in diabetic rats was established by injecting streptozotocin. MiR-503-5p and SYDE2 in ED rats were altered by injection of miR-503-5p mimic or si/oe-SYDE2. The targeting link between miR-503-5p and SYDE2 was testified. ICP/MAP value was tested by pressure sensor; Penile capillary abundance was assessed; Penile cGMP and AGEs were detected; penile smooth muscle cell apoptosis was assessed; MiR-503-5p and SYDE2 were tested. In streptozotocin-induced ED rats, miR-503-5p was reduced and SYDE2 was elevated. Elevating miR-503-5p or silencing of SYDE2 can enhance penile erection rate, ICP/MAP value, capillary abundance, and cGMP but reduce AGEs and penile smooth muscle cell apoptosis rate in ED rats. Strengthening SYDE2 with elevating miR-503-5p turned around the accelerating effect of elevated miR-503-5p on penile erection in ED rats. SYDE2 was a downstream target gene of miR-503-5p. MiR-503-5p protects streptozotocin-induced sexual dysfunction in diabetic rats by targeting SYDE2.


Assuntos
Apoptose , Diabetes Mellitus Experimental , Regulação para Baixo , Disfunção Erétil , MicroRNAs , Pênis , Ratos Sprague-Dawley , Animais , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Disfunção Erétil/genética , Disfunção Erétil/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Apoptose/genética , Regulação para Baixo/genética , Pênis/patologia , Estreptozocina , Ereção Peniana , Ratos , GMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miócitos de Músculo Liso/metabolismo , Produtos Finais de Glicação Avançada/metabolismo
5.
Endocr Regul ; 58(1): 57-67, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563294

RESUMO

Advanced glycation end products (AGEs) are a diverse group of compounds that are formed as a result of the non-enzymatic reaction between a reducing sugar such as glucose and the free NH2 groups of an amino acid in a protein or other biomolecule. The chemical reaction, by which these products are generated, is known as the Maillard reaction and occurs as a part of the body's normal metabolism. Such a reaction is enhanced during diabetes due to hyperglycemia, but it can also occur during the preparation, processing, and preservation of certain foods. Therefore, AGEs can also be obtained from the diet (d-AGE) and contribute to an increase of the total serum pool of these compounds. They have been implicated in a wide variety of pathological processes, mainly because of their ability to induce inflammatory responses and oxidative stress increase. They are extensively accumulated as a part of the normal aging, especially in tissues rich in long half-life proteins, which can compromise the physiology of these tissues. d-AGEs are abundant in diets rich in processed fats and sugars. This review is addressed to the current knowledge on these products and their impact on the immunomodulation of various mechanisms that may contribute to exacerbation of the diabetes pathophysiology.


Assuntos
Diabetes Mellitus , Produtos Finais de Glicação Avançada , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Dieta/efeitos adversos , Reação de Maillard , Inflamação
6.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474393

RESUMO

CD40 induces pro-inflammatory responses in endothelial and Müller cells and is required for the development of diabetic retinopathy (DR). CD40 is upregulated in these cells in patients with DR. CD40 upregulation is a central feature of CD40-driven inflammatory disorders. What drives CD40 upregulation in the diabetic retina remains unknown. We examined the role of advanced glycation end products (AGEs) in CD40 upregulation in endothelial cells and Müller cells. Human endothelial cells and Müller cells were incubated with unmodified or methylglyoxal (MGO)-modified fibronectin. CD40 expression was assessed by flow cytometry. The expression of ICAM-1 and CCL2 was examined by flow cytometry or ELISA after stimulation with CD154 (CD40 ligand). The expression of carboxymethyl lysine (CML), fibronectin, and laminin as well as CD40 in endothelial and Müller cells from patients with DR was examined by confocal microscopy. Fibronectin modified by MGO upregulated CD40 in endothelial and Müller cells. CD40 upregulation was functionally relevant. MGO-modified fibronectin enhanced CD154-driven upregulation of ICAM-1 and CCL2 in endothelial and Müller cells. Increased CD40 expression in endothelial and Müller cells from patients with DR was associated with increased CML expression in fibronectin and laminin. These findings identify AGEs as inducers of CD40 upregulation in endothelial and Müller cells and enhancers of CD40-dependent pro-inflammatory responses. CD40 upregulation in these cells is associated with higher CML expression in fibronectin and laminin in patients with DR. This study revealed that CD40 and AGEs, two important drivers of DR, are interconnected.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Fibronectinas/metabolismo , Células Ependimogliais/metabolismo , Células Endoteliais/metabolismo , Óxido de Magnésio/metabolismo , Retina/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Laminina/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus/metabolismo
7.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542178

RESUMO

In mammals, glycated serum albumin (gSA) contributes to the pathogenesis of many metabolic diseases by activating the receptors (RAGE) for advanced glycation end products (AGEs). Many aspects of the gSA-RAGE interaction remain unknown. The purpose of the present paper was to study the interaction of glycated human albumin (gHSA) with RAGE using molecular modeling methods. Ten models of gHSA modified with different lysine residues to carboxymethyl-lysines were prepared. Complexes of gHSA-RAGE were obtained by the macromolecular docking method with subsequent molecular dynamics simulation (MD). According to the MD, the RAGE complexes with gHSA glycated at Lys233, Lys64, Lys525, Lys262 and Lys378 are the strongest. Three-dimensional models of the RAGE dimers with gHSA were proposed. Additional computational experiments showed that the binding of fatty acids (FAs) to HSA does not affect the ability of Lys525 (the most reactive lysine) to be glycated. In contrast, modification of Lys525 reduces the affinity of albumin for FA. The interspecies differences in the molecular structure of albumin that may affect the mechanism of the gSA-RAGE interaction were discussed. The obtained results will help us to learn more about the molecular basis for the involvement of serum albumin in the AGE/RAGE axis and improve the methodology for studying cellular signaling pathways involving RAGE.


Assuntos
Lisina , Albumina Sérica , Animais , Humanos , Albumina Sérica/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Mamíferos/metabolismo , Modelos Moleculares , Albumina Sérica Humana , Receptor para Produtos Finais de Glicação Avançada
8.
J Agric Food Chem ; 72(13): 7203-7218, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518258

RESUMO

Diabetes complications are associated with aldose reductase (AR) and advanced glycation end products (AGEs). Using bioassay-guided isolation by column chromatography, 10 flavonoids and one coumarin were isolated from Poncirus trifoliata Rafin and tested in vitro for an inhibitory effect against human recombinant AR (HRAR) and rat lens AR (RLAR). Prunin, narirutin, and naringin inhibited RLAR (IC50 0.48-2.84 µM) and HRAR (IC50 0.68-4.88 µM). Docking simulations predicted negative binding energies and interactions with the RLAR and HRAR binding pocket residues. Prunin (0.1 and 12.5 µM) prevented the formation of fluorescent AGEs and nonfluorescent Nε-(carboxymethyl) lysine (CML), as well as the fructose-glucose-mediated protein glycation and oxidation of human serum albumin (HSA). Prunin suppressed the formation of the ß-cross-amyloid structure of HSA. These results indicate that prunin inhibits oxidation-dependent protein damage, AGE formation, and AR, which may help prevent diabetes complications.


Assuntos
Complicações do Diabetes , Cristalino , Florizina/análogos & derivados , Poncirus , Ratos , Humanos , Animais , Glucose/farmacologia , Poncirus/metabolismo , Reação de Maillard , Produtos Finais de Glicação Avançada/metabolismo , Albumina Sérica Humana , Aldeído Redutase/metabolismo , Frutose
9.
Int J Biol Macromol ; 264(Pt 1): 130478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428781

RESUMO

In hyperglycemia, accelerated glycation and oxidative stress give rise to many diabetic complications, such as diabetic cardiomyopathy (DCM). Glycated human serum albumin (GHSA) has disturbed structural integrity and hampered functional capabilities. When GHSA accumulates around cardiac cells, Nrf-2 is dysregulated, aiding oxidative stress. L-Arginine (L-Arg) is prescribed to patients with diabetes and cardiovascular diseases. This research contributes to the mechanistic insights on antiglycation and antioxidant potential of L-Arg in alleviating DCM. HSA was glycated with methylglyoxal in the presence of L-Arg (20-640 mM). Structural and functional modifications of HSA were studied. L-Arg and HSA, GHSA interactions, and thermodynamics were determined by steady-state fluorescence. H9c2 cardiomyocytes were given treatments of GHSA-L-Arg along with the inhibitor of the receptor of AGEs. Cellular antioxidant levels, detoxification enzyme activities were measured. Gene, protein expressions, and immunofluorescence data examined the activation and nuclear translocation of Nrf-2 during glycation and oxidative stress. L-Arg protected HSA from glycation-induced structural and functional modifications. The binding affinity of L-Arg was more towards HSA (104 M-1). L-Arg, specifically at lower concentration (20 mM), upregulated Nrf-2 gene, protein expressions and facilitated its nuclear translocation by activating Nrf-2 signaling. The study concluded that L-Arg can be of therapeutic advantage in glycation-induced DCM and associated oxidative stress.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/tratamento farmacológico , Produtos Finais de Glicação Avançada/metabolismo , Reação de Maillard , Antioxidantes/farmacologia , Albumina Sérica/química , Arginina/farmacologia
10.
Mol Biol Rep ; 51(1): 434, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520585

RESUMO

BACKGROUND: The formation of advanced glycation end products (AGEs) is the central process contributing to diabetic complications in diabetic individuals with sustained and inconsistent hyperglycemia. Methylglyoxal, a reactive carbonyl species, is found to be a major precursor of AGEs, and its levels are elevated in diabetic conditions. Dysfunction of pancreatic beta cells and impairment in insulin secretion are the hallmarks of diabetic progression. Exposure to methylglyoxal-induced AGEs alters the function and maintenance of pancreatic beta cells. Hence, trapping methylglyoxal could be an ideal approach to alleviate AGE formation and its influence on beta cell proliferation and insulin secretion, thereby curbing the progression of diabetes to its complications. METHODS AND RESULTS: In the present study, we have explored the mechanism of action of (+)-Catechin against methylglyoxal-induced disruption in pancreatic beta cells via molecular biology techniques, mainly western blot. Methylglyoxal treatment decreased insulin synthesis (41.5%) via downregulating the glucose-stimulated insulin secretion pathway (GSIS). This was restored upon co-treatment with (+)-Catechin (29.9%) in methylglyoxal-induced Beta-TC-6 cells. Also, methylglyoxal treatment affected the autocrine function of insulin by disrupting the IRS1/PI3k/Akt pathway. Methylglyoxal treatment suppresses Pdx-1 and Maf A levels, which are responsible for beta cell maintenance and cell proliferation. (+)-Catechin could significantly augment the levels of these transcription factors. CONCLUSION: This is the first study to examine the impact of a natural compound on methylglyoxal with the insulin-mediated autocrine and paracrine activities of pancreatic beta cells. The results indicate that (+)-Catechin exerts a protective effect against methylglyoxal exposure in pancreatic beta cells and can be considered a potential anti-glycation agent in further investigations on ameliorating diabetic complications.


Assuntos
Catequina , Complicações do Diabetes , Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Catequina/farmacologia , Catequina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Complicações do Diabetes/metabolismo , Produtos Finais de Glicação Avançada/metabolismo
11.
J Clin Hypertens (Greenwich) ; 26(4): 431-440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523455

RESUMO

We measured the levels of High-Mobility Group Box 1 (HMGB1), Receptor for Advanced Glycation Endproducts (RAGE), T Helper 17 cells (Th17), Regulatory T cells (Treg), and related cytokines in the peripheral blood of patients with severe preeclampsia (SPE) complicated with acute heart failure (AHF) to explore the expression changes in these indicators. In total, 96 patients with SPE admitted to Gansu Provincial Maternity and Child-care Hospital between June 2020 and June 2022 were included in the study. The patients were divided into SPE+AHF (40 patients) and SPE (56 patients) groups based on whether they suffered from AHF. Additionally, 56 healthy pregnant women who either received prenatal examinations or were admitted to our hospital for delivery during the same period were selected as the healthy control group. An enzyme-linked immunosorbent assay was performed to detect the expression levels of HMGB1, RAGE, interleukin (IL)-17, IL-6, transforming growth factor ß (TGF-ß), IL-10, and NT-proBNP in plasma. Flow cytometry was employed to determine the percentages of Th17 and Treg cells. Compared to the healthy control group, the SPE+AHF and SPE groups had higher plasma levels of HMGB1 and RAGE expression, higher Th17 percentage and Th17/Treg ratio, and lower Treg percentage. Compared to the SPE group, the SPE+AHF group had higher plasma levels of HMGB1 and RAGE expression, higher Th17 percentage and Th17/Treg ratio, and lower Treg percentage (P < .05). In patients with SPE with AHF, plasma HMGB1 was positively correlated with RAGE, Th17, Th17/Treg, IL-17, and IL-6 and was negatively correlated with TGF-ß and IL-10 (P < .05). Our findings revealed that patients with SPE with AHF had elevated levels of HMGB1 and RAGE while exhibiting Th17/Treg immune imbalance, suggesting that the abnormal expression of these indicators may be involved in the pathogenesis of SPE with AHF.


Assuntos
Proteína HMGB1 , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Citocinas , Produtos Finais de Glicação Avançada/metabolismo , Proteína HMGB1/metabolismo , Hipertensão/metabolismo , Interleucina-10/metabolismo , Interleucina-6 , Pré-Eclâmpsia/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo
12.
Nutrients ; 16(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474882

RESUMO

Previous studies have shown that advanced glycation end products (AGEs) are implicated in the occurrence and progression of numerous diseases, with dietary AGEs being particularly associated with intestinal disorders. In this study, methylglyoxal-beta-lactoglobulin AGEs (MGO-ß-LG AGEs) were utilized as the exclusive nitrogen source to investigate the interaction between protein-bound AGEs and human gut microbiota. The high-resolution mass spectrometry analysis of alterations in peptides containing AGEs within metabolites before and after fermentation elucidated the capacity of intestinal microorganisms to enzymatically hydrolyze long-chain AGEs into short-chain counterparts. The 16S rRNA sequencing revealed Klebsiella, Lactobacillus, Escherichia-Shigella, and other genera as dominant microbiota at different fermentation times. A total of 187 potential strains of AGE-metabolizing bacteria were isolated from the fermentation broth at various time points. Notably, one strain of Klebsiella exhibited the most robust growth capacity when AGEs served as the sole nitrogen source. Subsequently, proteomics was employed to compare the changes in protein levels of Klebsiella X15 following cultivation in unmodified proteins and proteins modified with AGEs. This analysis unveiled a remodeled amino acid and energy metabolism pathway in Klebsiella in response to AGEs, indicating that Klebsiella may possess a metabolic pathway specifically tailored to AGEs. This study found that fermenting AGEs in healthy human intestinal microbiota altered the bacterial microbiota structure, especially by increasing Klebsiella proliferation, which could be a key factor in AGEs' role in causing diseases, particularly intestinal inflammation.


Assuntos
Produtos Finais de Glicação Avançada , Aldeído Pirúvico , Humanos , Produtos Finais de Glicação Avançada/metabolismo , RNA Ribossômico 16S , Aldeído Pirúvico/química , Bactérias/metabolismo , Nitrogênio
13.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473959

RESUMO

Advanced glycation end products (AGEs) prime macrophages for lipopolysaccharide (LPS)-induced inflammation. We investigated the persistence of cellular AGE-sensitization to LPS, considering the nuclear content of p50 and p65 nuclear factor kappa B (NFKB) subunits and the expression of inflammatory genes. Macrophages treated with control (C) or AGE-albumin were rested for varying intervals in medium alone before being incubated with LPS. Comparisons were made using one-way ANOVA or Student t-test (n = 6). AGE-albumin primed macrophages for increased responsiveness to LPS, resulting in elevated levels of TNF, IL-6, and IL-1beta (1.5%, 9.4%, and 5.6%, respectively), compared to C-albumin. TNF, IL-6, and IL-1 beta secretion persisted for up to 24 h even after the removal of AGE-albumin (area under the curve greater by 1.6, 16, and 5.2 times, respectively). The expressions of Il6 and RelA were higher 8 h after albumin removal, and Il6 and Abca1 were higher 24 h after albumin removal. The nuclear content of p50 remained similar, but p65 showed a sustained increase (2.9 times) for up to 24 h in AGE-albumin-treated cells. The prolonged activation of the p65 subunit of NFKB contributes to the persistent effect of AGEs on macrophage inflammatory priming, which could be targeted for therapies to prevent complications based on the AGE-RAGE-NFKB axis.


Assuntos
Interleucina-6 , NF-kappa B , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Albuminas/metabolismo
14.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397071

RESUMO

The "normobaric oxygen paradox" (NOP) describes the response to the return to normoxia after a hyperoxic event, sensed by tissues as an oxygen shortage, up-regulating redox-sensitive transcription factors. We have previously characterized the time trend of oxygen-sensitive transcription factors in human PBMCs, in which the return to normoxia after 30% oxygen is sensed as a hypoxic trigger, characterized by hypoxia-induced factor (HIF-1) activation. On the contrary, 100% and 140% oxygen induce a shift toward an oxidative stress response, characterized by NRF2 and NF-kB activation in the first 24 h post exposure. Herein, we investigate whether this paradigm triggers Advanced Glycation End products (AGEs) and Advanced Oxidation Protein Products (AOPPs) as circulating biomarkers of oxidative stress. Secondly, we studied if mitochondrial biogenesis was involved to link the cellular response to oxidative stress in human PBMCs. Our results show that AGEs and AOPPs increase in a different manner according to oxygen dose. Mitochondrial levels of peroxiredoxin (PRX3) supported the cellular response to oxidative stress and increased at 24 h after mild hyperoxia, MH (30% O2), and high hyperoxia, HH (100% O2), while during very high hyperoxia, VHH (140% O2), the activation was significantly high only at 3 h after oxygen exposure. Mitochondrial biogenesis was activated through nuclear translocation of PGC-1α in all the experimental conditions. However, the consequent release of nuclear Mitochondrial Transcription Factor A (TFAM) was observed only after MH exposure. Conversely, HH and VHH are associated with a progressive loss of NOP response in the ability to induce TFAM expression despite a nuclear translocation of PGC-1α also occurring in these conditions. This study confirms that pulsed high oxygen treatment elicits specific cellular responses, according to its partial pressure and time of administration, and further emphasizes the importance of targeting the use of oxygen to activate specific effects on the whole organism.


Assuntos
Hiperóxia , Oxigênio , Humanos , Oxigênio/farmacologia , Oxigênio/metabolismo , Hiperóxia/metabolismo , Produtos da Oxidação Avançada de Proteínas/metabolismo , Projetos Piloto , Biogênese de Organelas , Leucócitos Mononucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hipóxia , Estresse Oxidativo/fisiologia , Produtos Finais de Glicação Avançada/metabolismo
15.
Biomolecules ; 14(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38397439

RESUMO

Advanced glycation end-products (AGEs) have recently been implicated in the onset/progression of lifestyle-related diseases (LSRDs); therefore, the suppression of AGE-induced effects may be used in both the prevention and treatment of these diseases. Various AGEs are produced by different biological pathways in the body. Glyceraldehyde (GA) is an intermediate of glucose and fructose metabolism, and GA-derived AGEs (GA-AGEs), cytotoxic compounds that accumulate and induce damage in mammalian cells, contribute to the onset/progression of LSRDs. The following GA-AGE structures have been detected to date: triosidines, GA-derived pyridinium compounds, GA-derived pyrrolopyridinium lysine dimers, methylglyoxal-derived hydroimidazolone 1, and argpyrimidine. GA-AGEs are a key contributor to the formation of toxic AGEs (TAGE) in many cells. The extracellular leakage of TAGE affects the surrounding cells via interactions with the receptor for AGEs. Elevated serum levels of TAGE, which trigger different types of cell damage, may be used as a novel biomarker for the prevention and early diagnosis of LSRDs as well as in evaluations of treatment efficacy. This review provides an overview of the structures of GA-AGEs.


Assuntos
Produtos Finais de Glicação Avançada , Gliceraldeído , Animais , Produtos Finais de Glicação Avançada/metabolismo , Gliceraldeído/metabolismo , Açúcares , Reação de Maillard , Mamíferos/metabolismo
16.
Sci Rep ; 14(1): 4685, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409584

RESUMO

The occurrence of nonenzymatic glycosylation reactions in skin fibroblasts can lead to severe impairment of skin health. To investigate the protective effects of the major functional ingredient from Gentianaceae, gentiopicroside (GPS) on fibroblasts, network pharmacology was used to analyse the potential pathways and targets underlying the effects of GPS on skin. At the biochemical and cellular levels, we examined the inhibitory effect of GPS on AGEs, the regulation by GPS of key ECM proteins and vimentin, the damage caused by GPS to the mitochondrial membrane potential and the modulation by GPS of inflammatory factors such as matrix metalloproteinases (MMP-2, MMP-9), reactive oxygen species (ROS), and IL-6 via the RAGE/NF-κB pathway. The results showed that GPS can inhibit AGE-induced damage to the dermis via multiple pathways. The results of biochemical and cellular experiments showed that GPS can strongly inhibit AGE production. Conversely, GPS can block AGE-induced oxidative stress and inflammatory responses in skin cells by disrupting AGE-RAGE signalling, maintain the balance of ECM synthesis and catabolism, and alleviate AGE-induced dysfunctions in cellular behaviour. This study provides a theoretical basis for the use of GPS as an AGE inhibitor to improve skin health and alleviate the damage caused by glycosylation, showing its potential application value in the field of skin care.


Assuntos
Produtos Finais de Glicação Avançada , Glucosídeos Iridoides , Reação de Maillard , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Fibroblastos/metabolismo
17.
Exp Mol Med ; 56(3): 630-645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424194

RESUMO

The meniscus is vital for maintaining knee homeostasis and function. Meniscal calcification is one of the earliest radiological indicators of knee osteoarthritis (KOA), and meniscal calcification is associated with alterations in biomechanical properties. Meniscal calcification originates from a biochemical process similar to vascular calcification. Advanced glycation end products (AGEs) and their receptors (RAGEs) reportedly play critical roles in vascular calcification. Herein, we investigated whether targeting AGE-RAGE is a potential treatment for meniscal calcification. In our study, we demonstrated that AGE-RAGE promotes the osteogenesis of meniscal cells and exacerbates meniscal calcification. Mechanistically, AGE-RAGE activates mTOR and simultaneously promotes ATF4 accumulation, thereby facilitating the ATF4-mTOR positive feedback loop that enhances the osteogenic capacity of meniscal cells. In this regard, mTOR inhibits ATF4 degradation by reducing its ubiquitination, while ATF4 activates mTOR by increasing arginine uptake. Our findings substantiate the unique role of AGE-RAGE in the meniscus and reveal the role of the ATF4-mTOR positive feedback loop during the osteogenesis of meniscal cells; these results provide potential therapeutic targets for KOA.


Assuntos
Menisco , Osteoartrite do Joelho , Calcificação Vascular , Humanos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Retroalimentação , Produtos Finais de Glicação Avançada/metabolismo , Menisco/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Serina-Treonina Quinases TOR , Calcificação Vascular/metabolismo
18.
Int J Biol Macromol ; 262(Pt 1): 129856, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423908

RESUMO

In this study, a novel polysaccharide, AAP-2S, was extracted from Auricularia auricula, and the anti-glycosylation effect of AAP-2S and its underlying mechanisms were investigated using an in vitro BSA-fructose model and a cellular model. The results demonstrated the inhibiting formation of advanced glycation end products (AGEs) in vitro by AAP-2S. Concurrently, it attenuated oxidative damage to proteins in the model, preserved protein sulfhydryl groups from oxidation, reduced protein carbonylation, prevented structural alterations in proteins, and decreased the formation of ß-crosslinked structures. Furthermore, AAP-2S demonstrated metal-chelating capabilities. GC-MS/MS-based metabolomics were employed to analyze changes in metabolic profiles induced by AAP-2S in a CML-induced HK-2 cell model. Mechanistic investigations revealed that AAP-2S could mitigate glycosylation and ameliorate cell fibrosis by modulating the RAGE/TGF-ß/NOX4 pathway. This study provides a foundational framework for further exploration of Auricularia auricular polysaccharide as a natural anti-AGEs agent, paving the way for its potential development and application as a food additive.


Assuntos
Auricularia , Reação de Maillard , Auricularia/metabolismo , Espectrometria de Massas em Tandem , Polissacarídeos/farmacologia , Proteínas , Produtos Finais de Glicação Avançada/metabolismo
19.
Diabetes Metab ; 50(2): 101524, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346471

RESUMO

BACKGROUND: Cardiovascular disease is frequent in type 2 diabetes mellitus (T2DM). We investigated the relationship between skin autofluorescence (SAF) of advanced glycation end-products and later cardiovascular events (CVEs) in patients with T2DM. RESEARCH DESIGN AND METHODS: We conducted a retrospective analysis of 504 patients hospitalized for uncontrolled and/or complicated T2DM between 2009 and 2017. SAF was measured using an AGE-Reader. Participants were followed up from admission to December 2020, for the onset of a CVE (myocardial infarction, stroke, revascularization procedures or cardiovascular death). The relationship between SAF and CVE was analyzed by multivariable Cox regression. Log-rank curves were used to compare CVE-free survival in patients whose SAF at admission was above versus below the whole-population median. The analysis was repeated in subjects without/with macroangiopathy (defined as myocardial infarction, stroke, peripheral revascularization) at baseline. FINDINGS: During 54 months of follow-up, 69 (13.7%) patients had a CVE. Baseline SAF was significantly higher in patients with T2DM who later experienced a CVE (2.89 ± 0.70 arbitrary units versus 2.64 ± 0.62 in others, P = 0.002). This relationship was significant after adjusting for age, sex, conventional risk factors (diabetes duration, HbA1c, arterial hypertension, dyslipidemia, smoking, body mass index), vascular complications, C-reactive protein, and treatments for diabetes. The CVE-free survival curves differed between subjects whose SAF was above the whole-population median (log-rank: P = 0.002) and those whose SAF was above the macroangiopathy-free sub-population median (log-rank: P = 0.016). CONCLUSION: SAF of advanced glycation end-products was related to a higher incidence of later CVE in patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Infarto do Miocárdio , Acidente Vascular Cerebral , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Estudos Retrospectivos , Reação de Maillard , Pele/metabolismo , Infarto do Miocárdio/metabolismo
20.
Food Funct ; 15(4): 2197-2207, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38304954

RESUMO

As prebiotics supplemented in infant formulas (IFs), galactooligosaccharides (GOSs) also have many other biological activities; however, their Maillard reaction characteristics are still unclear. We investigated the Maillard reactivity of GOSs and their effects on advanced glycation end product (AGE) formation during IF processing. The results showed that AGE and HMF formation was temperature-dependent and reached the maximum at pH 9.0 in the Maillard reaction system of GOSs and Nα-acetyl-L-lysine. Acidic conditions accelerated HMF formation; however, protein cross-linking was more likely to occur under alkaline conditions. The degree of polymerization (DP) of GOSs had no significant effect on AGEs formation (except pyrraline); however, the greater the DP, the higher the concentration of HMF and pyrraline. Besides, compared with arginine and casein, lysine and whey protein were more prone to Maillard reaction with GOSs. GOSs promoted AGEs formation in a dose-dependent manner during the processing of IFs. These results provide a reliable theoretical basis for application of GOSs in IFs.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Fórmulas Infantis , Temperatura , Lisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...